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CONTROL OF THE MOTION OF A PENDULUM IN A GAME-THEORETIC SITUATION* 

V.V. OSTAPENKO 

The description of the structure of differential approach-evasion games 
has, in general, a non-constructive character /l-5/. In order to overcome 
this drawback separate classes of games, admitting of a relatively simple 
construction of the players' strategies, were investigated in /6-lo/. A 
method developed in /9, lO/ is applied to a new class of games, including 
games whose dynamics are described by the pendulum equation. 

1. Let X be a finite-dimensional Euclidean space and C(T), z E [O, tl an integrable family 
of linear operators acting from X into X. We shall use the following definition below /ll/. 

Definition. Let H C {x* E X : 11 x*-j] = I}. The set M will be called H-convex if it can 
be represented in the form 

(1.1) 

where c., -) denotes a scalar product in X and the quantities c(z*) can take the value t-00. 
Let 0 = ('~0 = O<t,<... <'c, = t} be a finite decomposition of the interval [O,t]. We 

denote by Ho a set of unit vectors x* E X. not necessarily all vectors, for which the 
following conditions hold: 

a) C* (7)x* = h (z\ x*)x* for which z E 10, t1; 

b) The scalar function h(. 1 z*) does not, for any I*, change its sign in every interval 
[Ti-lr -Ci) (i = I, . . ., n)* 

Let us write 

ci= f C(T)&, i=l,...,n 
‘i-1 

and assume that the operators Ci have their inverses. 

Theorem 1. Let M be a Ho-convex set, and 21 01. . . ., Si), Sj E IZj-19 Tj) (j L 1, . . ., i; i = i, 

. . ., 4 the functions integrable over the variable manifold, with values in X. Then, if for 
any si E [7i-lr .ci) (i = 1, . . ., n) the following inclusion holds: 

,jJC*Zi(S,, .-.,Si)EM, then jC(r)z(r)dTEM 
i=l 0 

where 

*i-l 

5 (S) = 1 C2,C(Oi_,). . . [ C;'C(O1) Xi(Ol, . . ., 
%--3 ?o 

O&l* S) do,, . . . , dCOi_l 

when s f 1Ti-l. .cil. 

Proof. We have, by virtue of the convex and closed nature of M, 

2 5 C@)&WiC:M 
i=l zi_l 

Wt = conv (Xi (S1, . . .t Si)r Sj E [zj-11 zj)I 
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Let M be representable in the form (1.1) where I-I 7. WC,]. The following sequence of 
equations holds for any s* (~II~~~ (the summation is carried out over i from 1 to n) : 

xi da, . . . dwj-,, C* (Wi) x*> doi ~1: 

IC< do,. e . doi_,, .P>do,=... 

where zi e Wi is a suitable point. From (1.2) it follows that the last expression 
above sequence of equations is not greater than c(x*), and this completes the proof 
theorem. 

in the 
of the 

2. Let us consider a game with a fixed time of termination. Let Z, L be the Euclidean 
spaces dim L <dimZ; A :Z-+Z, cp:L+ Z, rc :Z-+L the linear operators, U and V compacta in 
Euclidean spaces and B: U x V+ L a continuous mapping. The dynamics of the gameisdescribed 
by the following equation: 

z' = AZ + rpB (u, v), z E 2, u E U, v E V 

We write the expression for the terminal set in the form ML = {z~Z:ns~ iv}, where 
I?!! c L is a closed set. The measurable functions u(z) and V(Z) with values inUand V 
respectively represent the admissible controls of the players P and E. The aim of the player 
P is to achieve the inclusion nz(t)E kf, and that of the player E is to prevent it. 

Let us write X = L, C(T) = r&@-r) cp and assume that HO is the set defined in Sect.1. We 
write 

and assume that ci-'(i = 1,. ..,n) exist. 
Let ui (VI, . . .( Vi) be a mapping acting from V' into U such, that for any admissible 

COntrOlS Vi (Si), Si E [‘t+l, ‘Ci) the function Ui (V, (Sr), . . ., Vi (Si)) is measurable over the variable 
manifold. 

Let us put 

'i-1 

Using the methods of /lo/ we can show that if B(U,u) --Ho"- is a convex set for all 
tl E V, then the equation 

B (u, Vi) -= r (VI (a), . . ., q-1 (*) I Vi) 

will have a solution UZ* (~1 (*), . . ., Vi-1 (*I 1 Vi) E u. We can have several. such solutions. Let us 
assume that Ui* is the smallest of these solutions in the lexicographic sense. According 



to Fubini's theorem the function z (~1 (*), . . ., vi-11 (5) 1 Vi (Si)) will be measurable in SE: [T~_.~, 

Ti)V as long as Vi (Si) is an admissible control of the player E. According to Filippov's 

lemma the function ui* (vI (a), . . ., UI.-~ (0) I Vi (si)) is also measurable in si E [T&,T~) and can be 

used as the control of the player P in this interval. 

fllheorem 2. Let M and B (U,v) be convex sets for any v~ V-Ha. and z,EP,*M. A 

mapping Ui : Vi --f U (i = P, . . ., n), exists such that the following assertions hold for any 

admissible control V(T) of the player E. 

a) the functions si (VI (4, . f ., Vi(Si)) are measurable over the manifold of the variables 

for .Q E [Tj-I, Tj) (i = 1, . . ., if where Vj (Sj) = V (Sj), Sj E tTj-3, Zj) i z 1, . . ., PZ); 
b) if ui* are the mappings constructed above with help of the mappings uir then the 

relation nz (t)~ M holds for the trajectory z (4 with origin at z,,, corresponding to the 

controls u (T) = ui* (VI (.), . . ., ~1-1 (*) 1 Vi (T)), TE 1~i-1, ti) and v (T). 

Proof. Let zk E P,*M. Then mappings ui (vl. . . ., v,), exist such that for any Vi E V 

neAtzo + 5 CiB (ui (VET . . ., Vi), Vi) EM 
i=1 

(2.U 

We shall show that the mappings ui (vk, . . . . Yi) can be constructed so that the function 

ui (VI @,f, . ‘ .t Ui (Si)) will be measurable over the manifold of variables SjE ITj-1~Tj) as long as 
vj fsj) is an admissible control of the player E. 

Let us write 

The mapping ul(vl) can be constructed as the smallest solution, in the lexicographic 

sense, of the following inclusion: 

aeAtzO + CIB (ul (vl). vl) E M2 

According to Filippov's lemma, the function ul(vl(sl)) will be measurable as long as 

u1 (6X), 81 E [r,, 71) is measurable. 

We shall assume that a mapping uk-i (VI, . . +,%-I) has been constructed. We can choose 

Uk ($3 . * ** %J as the smallest solution, inthelexicographic sense, of the inclusion 

According to Filippov's lemma, ak (VI @I), . . ., uk (Sk)) is a function measurable in Sj E 

hj-1, 21) (i = 1, . . ., k). 

We shall assume that the prayer E has chosen the control u(z) and vi (7) = v(r),'~E [~i-k, 

‘Gi) in the interval IO, tl. From (2.1) and Theorem 1 it follows that 

neAtZO + i: ; c(2)B(U;*(Vl('),...rUi-l(')Ivi(~)), vI (~))dz E M 
i=lzi_l 

which completes the proof of the theorem. 

Theorem 3. Let B (U, v) - Ho be a convex set for any v~ V and z,S P,*M. Then there 
exist mappings uj* (ur (e), . . ., u+~ (s)), i = 1, . . . . n (ui* places e;ery set of admissible controls of 

the player P ~3 (Sj)+ sJ ~3 IzJ_,, al) (i = 1, . . ., i-1) in 1:l correspondence with some value from V) 
such that nz (t)F M holds for a trajectory z(z) with origin at zO, corresponding to any 
admissible control u(z) of the player P and control v (r) = vi* (241 (a), . . ., z&l (.)), z E I%*, z*) 

(Uj (r)= u (T), Z E [zj-l* zj)) of the player E. 

Proof. Let zk TZ P,*M. Then there exists vr+ E V, such that for any USE u 

neAtzO + C,B (ul. vl*) E M a 

From the results of /lo/ it follows that since B(U,q*)- HO is a convex set, therefore 

~le=Jfq, + j-; C (.c) B (ul (z), vl*) dz E M, 
TO 

for any admissible u1 (T), T E [z,, 2%). 
Let us assume that the mappings Vi*% i< k have been constructed, and 
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The quantity X~_~ depends on zil (s), . . ., Q-~ (a). Just as before, this, together with /lo/, 
implies that uk* (ul (.), . . ., ZC~-~ (.)) exists such that for any admissible lli; (r), r E [l;k_l. zirl 

Q-1 i- 

Continuing the process of constructing CR*, we obtain nz (t)c M = Mk. 
Using the strategies described above, we can construct a-strategies of the players /4, 

5/. Therefore the following corollary holds. 

Corollary. Let M and B(U,u) (vE V)- Ho be convex sets. Then rg*Af = PLfW~, where 
P',w, is a set of all points from which the player P can terminate the game in his favour 
using the s-strategies /4, 51. 

3. We will illustrate the results obtained by solving a differential game whose dynamics 
are described by the linear-pendulum equation. 

Let the game be described by the equations 

s' = 1/, y' = - Dr + B (u, v), x E L (3.1) 

where D is a constant matrix. In this case a= L x L and the matrices ;1,n and rp can be 
represented in the form 

It can be shown that 

n& = /I cos ($5 r) (&Xj)-l ain /IkeAXe = (~~)-lsin(~~~) 

where the formal notation is used for the series 

cos(I/aT)= E- +- DrZ + & D*+--... 

(1/D)-'sin(L/Bt) =T-4 Dr"+&l)l+--... 

(3.2) 

From this it follows that if s(O)= zc,z.(0)=y,, then the solution of system (3.1) can be 
written in the form 

Let hj(i= I,. ..,k) be the eigenvalues of the operator D*. we shall allow the possibility 
that the eigenvalues may include zero. We choose a decomposition w= {T,,= O<s,<...<r,=Q, 
such that any function yi(r)=(<G)-l .n SE Qfq<t-*)) will not change its sign in every interval 
[r,_~, ri) (i = 1,. . ., nl. Here, as above, we shall assume that (~~)-~sin(~~i;J~) represents the formal 
notation of the second series of (3.2), provided that we replace D by hi in the latter. We 
can take as HO the set of all eigenvalues of the operator D*. Indeed, if .X*E HO corresponds 
to the eigenvalue hj, then (se &f-Q 'Pj*z* =: gj (r) 5*, and conditions a) and b) of the definition of 
the set Hw will hold. 

In order to apply Theorem 2, it is sufficient to confirm the condition of existence of 
Ci-3, where 

Ci = i (I/a)-'sin(y'a(1--r))dr 
'i-l 

This condition holds, in particular , when the operator U can be represented by 
matrix. 
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ON THE STABILIZATION OF CERTAIN NON-LINEAR SYSTEMS* 

V.B. KOLMANOVSKII 

The problem of the stabilization of systemswithanon-linearity,dependent 
on a small parameter e, is studied. A quasi-optimal stabilization algorithm 
is proposed and substantiated for the case of small e.If nothing is known 
regarding the magnitude of E , the technique of adaptive stabilization is 
developed. Examples of synthesis in the control of the motion of robots 
with unknown parameters are considered. 

The problem of the stabilization of motions , with which a large number of investigations 
have been concerned, is studied in two formulations /l/. The first is associated with the 
determination of the control under which the system becomes stable while the second is 
associated with the choice of the control which minimizes a functional (the quality criterion). 
Generally speaking, the above-mentioned formulations are not equivalent. In order that the 
control which minimizes the integral quality criterion should simultaneously make the system 
stable, it follows that one should consider quality criteria which are positive-definite with 
respect to the phase coordinates (quadratic criteria, for example). Moreover, if the per- 
turbations in the system are small, then a non-linear system may be approximated by a linear 
system. In fact, in the case of problems involving the stabilization of linear systems, the 
final results have been obtained with a quadratic quality criterion. 

The question of whether it is possible to expand the Bellman function and the optimal 
control in power series in small perturbations and the convergence of these series has been 
investigated in /3, 4/ for non-linear problems and small perturbations. At the same time, 
the initial perturbations may not.be small when real systems are treated and it is therefore 
necessary to take account of non-linearity when constructing the control. 

A method of quasi-optimal stabilization is presented below and error estimates are 
obtained for the case of arbitrary initial perturbations. 

1. Formulation of the quasi-optimal stabilization problem. A control system 
has the form 

z* (t) = Ef (t, x (t)) + B (t)u, t > 0, 5 (0) = %I 
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